Su Suntan Electrochemical Type Capacitors

Suntan Technology Company Limited
---All kinds of Capacitors

Aluminum is used for the electrodes by using a thin oxidization membrane.

Large values of capacitance can be obtained in comparison with the size of the capacitor, because the dielectric used is very thin.

The most important characteristic of electrolytic capacitors is that they have polarity. They have a positive and a negative electrode.[Polarised] This means that it is very important which way round they are connected. If the capacitor is subjected to voltage exceeding its working voltage, or if it is connected with incorrect polarity, it may burst. It is extremely dangerous, because it can quite literally explode. Make absolutely no mistakes.

Generally, in the circuit diagram, the positive side is indicated by a "+" (plus) symbol.

Electrolytic capacitors range in value from about 1µF to thousands of µF. Mainly this type of capacitor is used as a ripple filter in a power supply circuit, or as a filter to bypass low frequency signals, etc. Because this type of capacitor is comparatively similar to the nature of a coil in construction, it isn't possible to use for high-frequency circuits. (It is said that the frequency characteristic is bad.)

The photograph on the left is an example of the different values of electrolytic capacitors in which the capacitance and voltage differ.

From the left to right:

  • 1µF (50V) [diameter 5 mm, high 12 mm]
  • 47µF (16V) [diameter 6 mm, high 5 mm]
  • 100µF (25V) [diameter 5 mm, high 11 mm]
  • 220µF (25V) [diameter 8 mm, high 12 mm]
  • 1000µF (50V) [diameter 18 mm, high 40 mm]

The size of the capacitor sometimes depends on the manufacturer. So the sizes shown here on this page are just examples.

In the photograph to the right, the mark indicating the negative lead of the component can be seen. You need to pay attention to the polarity indication so as not to make a mistake when you assemble the circuit.

Su Suntan Capacitors

Suntan Technology Company Limited
---All kinds of Capacitors

  • The capacitor's function is to store electricity, or electrical energy.
  • The capacitor also functions as a filter, passing alternating current (AC), and blocking direct current (DC).
  • This symbol is used to indicate a capacitor in a circuit diagram.

The capacitor is constructed with two electrode plates facing eachother, but separated by an insulator.

When DC voltage is applied to the capacitor, an electric charge is stored on each electrode. While the capacitor is charging up, current flows. The current will stop flowing when the capacitor has fully charged.

When a circuit tester, such as an analog meter set to measure resistance, is connected to a 10 microfarad (µF) electrolytic capacitor, a current will flow, but only for a moment. You can confirm that the meter's needle moves off of zero, but returns to zero right away.

When you connect the meter's probes to the capacitor in reverse, you will note that current once again flows for a moment. Once again, when the capacitor has fully charged, the current stops flowing. So the capacitor can be used as a filter that blocks DC current. (A "DC cut" filter.)

However, in the case of alternating current, the current will be allowed to pass. Alternating current is similar to repeatedly switching the test meter's probes back and forth on the capacitor. Current flows every time the probes are switched.

The value of a capacitor (the capacitance), is designated in units called the Farad ( F ).

The capacitance of a capacitor is generally very small, so units such as the microfarad ( 10-6F ), nanofarad ( 10-9F ), and picofarad (10-12F ) are used.

Recently, an new capacitor with very high capacitance has been developed. The Electric Double Layer capacitor has capacitance designated in Farad units. These are known as "Super Capacitors."

Sometimes, a three-digit code is used to indicate the value of a capacitor. There are two ways in which the capacitance can be written. One uses letters and numbers, the other uses only numbers. In either case, there are only three characters used. [10n] and [103] denote the same value of capacitance. The method used differs depending on the capacitor supplier. In the case that the value is displayed with the three-digit code, the 1st and 2nd digits from the left show the 1st figure and the 2nd figure, and the 3rd digit is a multiplier which determines how many zeros are to be added to the capacitance. Picofarad ( pF ) units are written this way.

For example, when the code is [103], it indicates 10 x 103, or 10,000pF = 10 nanofarad( nF ) = 0.01 microfarad( µF ).

If the code happened to be [224], it would be 22 x 104 = or 220,000pF = 220nF = 0.22µF.

Values under 100pF are displayed with 2 digits only. For example, 47 would be 47pF.

The capacitor has an insulator( the dielectric ) between 2 sheets of electrodes. Different kinds of capacitors use different materials for the dielectric.

Su Suntan Tantalum Bead Capacitors

Suntan Technology Company Limited
---All kinds of Capacitors

Tantalum bead capacitors are polarised and have low voltage ratings like electrolytic capacitors. They are expensive but very small, so they are used where a large capacitance is needed in a small size.

Modern tantalum bead capacitors are printed with their capacitance, voltage and polarity in full. However older ones use a colour-code system which has two stripes (for the two digits) and a spot of colour for the number of zeros to give the value in µF. The standard colour code is used, but for the spot, grey is used to mean × 0.01 and white means × 0.1 so that values of less than 10µF can be shown. A third colour stripe near the leads shows the voltage (yellow 6.3V, black 10V, green 16V, blue 20V, grey 25V, white 30V, pink 35V). The positive (+) lead is to the right when the spot is facing you: 'when the spot is in sight, the positive is to the right'. 

  • For example:   blue, grey, black spot   means 68µF
  • For example:   blue, grey, white spot   means 6.8µF
  • For example:   blue, grey, grey spot   means 0.68µF


Su Suntan Capacitance

Suntan Technology Company Limited
---All kinds of Capacitors

This is a measure of a capacitor's ability to store charge. A large capacitance means that more charge can be stored. Capacitance is measured in farads, symbol F. However 1F is very large, so prefixes are used to show the smaller values.

Three prefixes (multipliers) are used, µ (micro), n (nano) and p (pico):

  • µ means 10-6 (millionth), so 1000000µF = 1F
  • n means 10-9 (thousand-millionth), so 1000nF = 1µF
  • p means 10-12 (million-millionth), so 1000pF = 1nF

Capacitor values can be very difficult to find because there are many types of capacitor with different labelling systems!

There are many types of capacitor but they can be split into two groups, polarised and unpolarised. Each group has its own circuit symbol.

Su Suntan Introduce What is A Capacitor

Suntan Technology Company Limited
---All kinds of Capacitors

A capacitor is a passive electronic component that storesenergy in theform of an electrostatic field. In its simplest form, a capacitorconsists of twoconducting plates separated by an insulating material called thedielectric. Thecapacitance is directly proportional to the surface areas of the plates, andis inverselyproportional to the separation between the plates. Capacitance alsodepends on thedielectric constant of the substance separating the plates.

The standard unit of capacitance is the farad, abbreviatedF. Thisis a large unit; more common units are the microfarad, abbreviated µF (1 µF =10-6F) and the picofarad, abbreviated pF (1 pF = 10-12 F).

Capacitors can be fabricated onto integrated circuit (IC)chips. They are commonly used in conjunction with transistors in dynamic random access memory (DRAM). The capacitors helpmaintain thecontents of memory. Because of their tiny physical size, thesecomponents have lowcapacitance. They must be recharged thousands of times per second or theDRAM willlose its data.

Large capacitors are used in the power supplies of electronicequipment ofall types, including computers and their peripherals. In these systems,thecapacitors smooth out the rectified utility AC, providing pure, battery-likeDC.

Su Suntan Small Bubbles, Big Capacitors

Suntan Technology Company Limited
---All kinds of Capacitors

In many ways capacitors are the hidden saving grace of the electronics world. They play an essential role in smoothing switch transitions by storing and releasing a small amount of energy over short time scales. Although inductors can play the same role, I think it is safe to say that without small, accurately valued capacitors the modern electronics industry would be a very different beast. Essentially, capacitors store charge, which means that the amount of charge they can store is related to the area available to put said charges. Over recent years, the development of better control over small scale structuring has lead to large increases in capacitance in relatively small packages. The increases have been such that there have been some thoughts of putting these supercapacitors to work as battery replacements in applications where high currents are required.

On that front we can present some good news. Last month Science reported that scientists had observed an unexpectedly large increase in capacitance in some nanoporous materials. A capacitor at its most simple is a couple of parallel metal plates, where the capacitance increases with the size of the plates and as the two plates get closer together. Unfortunately, increasing the area without too much thought is a quick way to find yourself ordering another 19 inch rack for your capacitors, while sparks, ashes, and electrical fires come from the plates getting too close together. However, an alternative is to roughen the surface and include an electrolyte, which effectively replaces the second plate. This increases the surface area of the plates without increasing the volume. The development of nanoporous materials has lead to dramatic increases in the surface area of capacitors and hence a reasonably sized supercapacitor. Exploring nanoporous carbon for capacitance is nothing new, however, previous methods had very little control over the pore size. Here the researchers developed a different fabrication process that allows them to control the pore size to within 0.05nm. The process begins with a carbide substrate, which is a metal plus carbon atoms. They then etch the metal away by reacting it with chlorine, leaving the surrounding carbon structure intact. Since the amount of metal in a carbide depends on the which metal is used, the pore size can be controlled quite accurately by a good choice of metal and the amount of etching performed.

Once the pore size reduced to that below the electrolyte ion plus surrounding solvent molecules , the effect of the pores was reduced. This is because the increased surface area only works if the distance between the electrolyte and plate remains constant and once the pores get too small the charges on the inside of the pore are too far from the nearest electrolyte ion. However, a further decrease in pore size saw the capacitance increase again. It turns out that when the material is so porous, many of the carbon atoms are just barely hanging on. As a result they can move around quite a bit, which allows the electrolyte to squeeze in. The resulting tight fit between the two means that along with an effective increase in surface area, the gap between the two plates is also decreased. Both of these factors increase the capacitance.

I would say the future looked foamy but my glass is empty.

Suntan Tell You Another Take on Desalination: Use a Capacitor

Suntan Technology Company Limited
----All Kinds of Capacitors

Desalination could dramatically help the looming shortage with water. The problem is the membrane.

Right now, desalinting seawater largely revolves around pressurizing water and forcing it through a membrane to purify it. The process takes a lot of energy and hence a lot of cost. Desalinating seawater can cost as much as 50 cents a liter.

A collection of private companies and research institutes in Spain have begun to experiment with capacitive deionization for purifying seawater. In this, two electrodes would be placed in a tank. The ions (i.e., salt particles) would be drawn to one electrode. The ions would absorb the ions, which could then be released in a regeneration cycle. Capacitive purification was considered in the past, but the materials were too expensive. So who knows, it might work now.

Expect to see a number of desalination come to the fore in the next few years. Policy makers and the public love the idea and areas of Australia, Africa and China are already suffering through prolonged droughts.

Some of the more interesting ideas out there:

Porifera: A spin-out from Lawrence Livermore National Labs, the company wants to make a desalination membrane out of carbon nanotubes. The company claims it won’t take much energy to purify water in this way and the membrane can’t get fouled. Salt and other bad stuff can’t fit through the pore/openings in the nanotubes.

NanoH2O: Grew out of a research project at UCLA and so far has raised $20 million in two rounds. It has a membrane embedded with nanoparticles that repels salts and lets water pass. By exploiting chemical attraction, NanoH2O reduces the amount of mechanical-induced pressure required for reverse osmosis: The company claims it can process 70 percent more water with 20 percent less power than conventional reverse osmosis plants.

Quos: A highly secretive Chicago company founded by Chinbay Fan and funded by Khosla Ventures. One thing Quos can’t keep secret: patent applications for a system that desalinates and purifies with graphite porous electrodes.

“The apparatus is capable of removing ionized and non-ionized organic compounds, inorganic ions, particulates and bacteria from wastewater streams in a single unit to produce potable water. Porous carbon-based electrodes function as impurities filters to remove particulate matter, such as ash, sand and high molecular weight compounds, as electrodes to concentrate and remove ionic species, and as adsorbents to remove organic materials and bacteria from the wastewater stream,” says patent application 11/724534.

Stonybrook Purification: It has created a thin, fibrous scaffold for reverse osmosis membranes that increases water flow to the reverse osmosis membrane. The company, out of SUNY Stony Brook, also has its own reverse osmosis membrane.

Suntan Tells You Capacitor Maker Lelon Cuts Into Wind Power Market

Suntan Technology Company Limited
---All Kinds of Capacitors

Aluminum electrolytic capacitor maker Lelon Electronics has seen extra orders from China appliance makers due to the China government's program to promote sales of home appliances in rural areas. The extra orders have covered Lelon's reduced orders from the US and Europe, the company said.

The price of aluminum electrolytic capacitors has been stable since August 2008, while the price of aluminum foil continues to drop, lowering Lelon's cost pressure. However, order visibility for aluminum electrolytic capacitors is still low, the company noted.

Lelon has entered the wind power market with its large-size capacitors, and plans to apply the product to other applications. The company has already shipped a small volume of large-size capacitors to a motorcycle maker and expects to expand into the automotive segment.